Loading...
机构名称:
¥ 2.0

实现可扩展量子计算机面临的最大挑战之一是设计一个物理设备,使每个量子处理操作的错误率保持在较低水平。这些错误可能源于量子操纵的准确性,例如固态量子比特中栅极电压的扫描或光学方案中激光脉冲的持续时间。错误还源于退相干,退相干通常被认为更为关键,因为它是量子系统固有的,从根本上说是与外部环境耦合的结果。将小的量子比特集合分组为具有对称性的簇可能有助于保护部分计算免受退相干的影响。在这项工作中,我们使用 4 级核心和离散旋转对称性的直接概括(称为 ω -旋转不变性)来编码耦合量子比特对和通用 2 量子比特逻辑门。我们将量子误差作为退相干​​的主要来源,并表明对称性使逻辑操作特别能抵御不合时宜的各向异性量子比特旋转。我们提出了一种可扩展的通用量子计算方案,其中核心充当量子计算晶体管(简称量子电阻)的角色。通过将量子电阻与引线进行隧道耦合,可以实现初始化和读出。外部引线被明确考虑在内,并被认为是另一个主要的退相干源。我们表明,通过调整量子电阻的内部参数,可以动态地将量子电阻与引线解耦,从而赋予它们作为可控量子存储单元所需的多功能性。通过这种动态解耦,量子电阻内的逻辑运算也可以对称地免受参数中无偏噪声的影响。我们确定了可以实现 ω -旋转不变性的技术。我们的许多结果可以推广到更高级别的 ω -旋转不变系统,或适用于具有其他对称性的集群。

arXiv:2106.00754v1 [quant-ph] 2021 年 6 月 1 日

arXiv:2106.00754v1 [quant-ph] 2021 年 6 月 1 日PDF文件第1页

arXiv:2106.00754v1 [quant-ph] 2021 年 6 月 1 日PDF文件第2页

arXiv:2106.00754v1 [quant-ph] 2021 年 6 月 1 日PDF文件第3页

arXiv:2106.00754v1 [quant-ph] 2021 年 6 月 1 日PDF文件第4页

arXiv:2106.00754v1 [quant-ph] 2021 年 6 月 1 日PDF文件第5页

相关文件推荐